
Introducing Traceability and Consistency Checking
for Change Impact Analysis across Engineering
Tools in an Automation Solution Company: An

Experience Report

Andreas Demuth∗, Roland Kretschmer∗, Alexander Egyed∗, Davy Maes†
∗Institute for Software Systems Engineering (ISSE)

Johannes Kepler University (JKU)
Linz, Austria

{andreas.demuth, roland.kretschmer, alexander.egyed}@jku.at
†Flanders Make

Belgium
{davy.maes}@flandersmake.be

Abstract—In today’s engineering projects, companies continu-
ously have to adapt their systems to changing customer or market
requirements. This requires a flexible, iterative development pro-
cess in which different parts of the system under construction are
built and updated concurrently. However, concurrent engineering
is quite problematic in domains where different engineering
domains and different engineering tools come together. In this
paper, we discuss experiences with Van Hoecke Automation, a
leading company in the areas of production automation and prod-
uct processing, in maintaining the consistency between electrical
models and the corresponding software controller when both
are subject to continuous change. The paper discusses how we
let engineers describe the relationships between electrical model
and software code in form of links and consistency rules; and
how through continuous consistency checking our approach then
notified those engineers of the erroneous impact of changes in
either electrical model or code.

Keywords—Software product lines, safe composition, incremen-
tal consistency checking, model evolution

I. INTRODUCTION

Today, technical development projects commonly span
across multiple domains and disciplines. It has become com-
mon that engineers with diverse backgrounds collaborate in
order to develop a complex system. For example, developing
a cyber-physical system typically requires software engineers,
hardware engineers, electrical engineers, requirements engi-
neers, mathematicians, physicists, and others to work together
closely. However, typically experts from these different do-
mains are responsible for different development artifacts. For
instance, the requirements the system under development must
fulfill may be negotiated with stakeholders by the requirements
engineer. The requirements may then be used by a mathe-
matician to calculate data that must be known to realize the
project. This data may then, in turn, be used by an electrical
engineer to create a model of the hardware setup. Based
on this hardware setup and other calculated data, a software
engineer may, finally, develop the source code that controls
the hardware components. Indeed, during initial development

of the mentioned artifacts there is typically communication
between experts from different domains. For example, once
the hardware design is finished, the hardware engineer informs
the software engineer about which hardware components will
be used and thus have to be controlled by the control software.
Each engineer will also quite likely inform the corresponding
supervisor about a finished artifact. Therefore, during initial
development, knowledge is typically passed on quite well
between involved engineers and the different artifacts are
likely to be consistent with respect to each other. However,
such communication often happens informally, and knowledge
passed during this communication might not be documented.
This becomes a problem especially when an artifact is evolved
past its initial stage, for example in an iterative development
process in which individual artifacts are evolved multiple times
until they reach their final state when the project is finished. In
this case, the rationale for certain decisions is often no longer
available for engineers. For instance, it might no longer be
clear why certain source code fragments are needed for imple-
menting the controlling of a piece of hardware. If an engineer
removes a component from the hardware model, software
engineers might have a hard time locating the corresponding
source code fragments. As a consequence, changes because of
evolution or maintenance may easily introduce inconsistencies
between different artifacts and the impact of a change is hard
to estimate.

These are exactly the issues that the Belgian company Van
Hoecke Automation (VHA), a leading provider of automation
solutions, is facing. In this paper, we present the results of
a collaboration between VHA, Flanders Make, and JKU’s
ISSE that addresses these issues. In particular, we describe
a solution that enables traceability, consistency checking, and
change impact analysis between different artifacts in VHA’s
development process. The solution relies on existing principles
of traceability and incremental consistency checking (e.g., the
DesignSpace Information Integration Platform [1] and the
Model/Analyzer Consistency Checking Framework [2], [3]).
Moreover, new technologies for establishing traceability and

the application of consistency checking to different artifacts
have been developed.

II. BACKGROUND

Van Hoecke Automation is a leading Belgian Family
company, founded in 1990, providing advanced solutions for
production automation, product processing, and product in-
spection and tracking. Their main sectors of operation include
the make industry with an important international activity in
the automotive and OEM sector, and the food industry. Key
competences of VHA regarding the discipline of software
engineering include the development of production supervisory
systems by means of standard tools and the development of
customer specific machine applications. As it is typical for
companies dealing with cyber-physical systems and production
automation, VHA employs experts from diverse domains, such
as business and management, software engineering, mechani-
cal engineering, electrical engineering, math, or physics.

Flanders Make is the strategic research centre for the
manufacturing industry with establishments in Lommel and
Leuven. The centre collaborates with research labs at various
Flemish universities as well as with major companies and
SMEs. Together, they focus on product and process innovation
based on the challenges and needs of the industry. The research
focus is on 4 technological domains: power electronics and
energy storage, mechatronics and design methods, production
processes, and people-driven system development. The primary
goal of the collaboration is to yield product and process
innovations in 3 fields of application: vehicles, machines, and
factories.

In this project, VHA and Flanders Make collaborated with
JKU’s ISSE to combine their experience in the development
of mechatronical systems with leading research on software
traceability and consistency checking. The results are meant to
not only be beneficial for the industrial partners with respect
to their development process, but also to serve as case study
for the application of research technologies from academia in
an industrial context.

III. PROBLEM STATEMENT

For this project, VHA and Flanders Make provided a
sample scenario illustrating an issue that occured during recent
iterative development. Next, we describe in detail this scenario
and the issue associated with it.

The scenario is about the design of a conveyor belt which is
powered by an asynchronous motor. The motor is controlled by
a programmable logic controller (PLC). This scenario involves
four different engineers: i) a systems engineer, ii) an electrical
engineer, iii) a safety engineer, and iv) a software engineer. The
process is depicted in Fig. 1. Each engineer is using specific
tooling during the following individual steps of the scenario:
1) [System concept] The systems engineer creates the speci-
fication of the initial system concept (as shown in Fig. 2(a)).
2) [Electrical design] Eplan Electric P8 is used by the elec-
trical engineer to specify the electrical connections between
actuators (e.g., a motor) and the PLC (a high-level view of
the electrical design is shown in Fig. 2(b), a snippet from the
actual EPlan P8 model is shown in Fig. 2(c)). The EPlan P8
model snippet depicts the control signal of the conveyor motor

Fig. 1: Incremental development of conveyor belt system.

as the component 21K3 and the normal output of the Siemens
PLC as the component Q70.0.
3) [Software design] In the example, the Eclipse IDE with
Java is used as a proxy for the regular PLC code in which the
control logic of the actuators are implemented (as shown in
Fig. 2(d)). Notice that for the two IO ports of the Siemens
PLC, there are two variables defined: i) hw_IO_out0_1
representing the normal output (Q70.0 in Fig. 2(c)), and ii)
hwIO_out1_1 representing the safety output of the Siemens
PLC (not depicted in Fig. 2(c)). Moreover, the variable
fb_motor_control represents the control signal of the
motor conveyor (21K3 in Fig. 2(c)). In the last line of
Fig. 2(d), the linking of the components Q70.0 and 21K3
from Fig. 2(c) is reflected.
4) [Safety analysis] Microsoft Excel is used by the safety
engineer for the analysis of potential harms to (human) op-
erators caused while operating the system, using a template
specifically designed at VHA (as shown in Fig. 2(e)).
5) [Electrical design update] the electrical engineer performs
updates of the electrical connections to avoid the harms iden-
tified in the previous step (as shown in the high-level view in
Fig. 2(f) and the actual EPlan P8 model snippet in Fig. 2(g)).
Notice that in Fig. 2(g) the control signal (component 21K3)
is now connected to a different component (Q30.1), which
represents the safety output of the Siemens PLC.
6) [Software design update] the software engineer per-
forms updates of the software so that it is in sync with
the updated electrical connections (as shown in Fig. 2(h)).
Notice that in the mapping of IO ports, the control signal
(fb_motor_control) is now linked to the safety output
of the Siemens PLC (hwIO_out1_1).

Note that after Step 5, the update of the electrical design,
there is an inconsistency between the electrical design and the
control software, and thus an update of the software design
is required. Specifically, in the EPlan P8 model snippet in
Fig. 2(g) it can be seen that the component 21K3 is no
longer connected to the component Q70.0 (as in Fig. 2(c)),
but instead it is now connected to the safety output of the

Siemens PLC, which is modeled as the component Q30.1.
The source code from Fig. 2(d) still reflects that 21K3 and
Q70.0 are connected. However, VHA has experienced that
in such a scenario the inconsistency may be overlooked by
engineers and may thus remain undetected, resulting in Step
6 being not performed in practice. This might be caused by a
lack of support for traceability, change impact analysis, and
inconsistency detection. The consequences of not detecting
the inconsistency and not performing step 6 in the scenario
include, for example, delays in the development progress or
failure to deliver a functioning system. Therefore, it is crucial
for VHA to introduce support for traceability, change impact
analysis, and inconsistency detection in their development
process.

IV. GOALS AND REQUIREMENTS

Let us now summarize the goals and specific solution
requirements stated by VHA. The main goals of the project
presented in this paper are:

• Increase awareness about consistency between spread-
sheet data, source code, and electrical models,

• Increase traceability between these development arti-
facts, and

• Get feedback about consistency and change impact.

A key requirement stated by VHA is the support for the
following technologies: Microsoft Excel Spreadsheets, and
Eplan Electric P8. Additionally, in the example, the Eclipse
IDE with Java is used as a proxy for the regular PLC code
development. Engineers using either tool must be notified
about arising inconsistencies. Moreover, it must be possible to
analyse the impact of a change and to track dependencies be-
tween different artifacts. Additionally, the current workflows of
the individual disciplines should not be disrupted significantly
(i.e., the specialized engineering tools used currently must not
be exchanged). Now that we have illustrated VHA’s challenge
problem and discussed the key goals and requirements they
stated, we will next present the solution that was developed in
the project.

V. REALIZATION

In order to address the challenge problem presented above,
we decided to develop a solution that is based on existing
approaches and that does not interfere with VHA’s established
development process. In this section, we discuss the general
architecture of our solution and then describe in detail how the
individiual parts work.

As discussed above, incremental consistency checking and
traceability between different artifacts are key features our
solution must provide. The original development artifacts
(e.g., Excel files) should remain unchanged. Therefore, they
are duplicated in the employed DesignSpace data integration
platform [1]. Two services running on top of the DesignSpace
platform are then used for performing consistency checking
and enabling traceability between different existing artifacts.
Next, we first discuss how artifact integration works in our
solution, then present how traceability can be established using
the integrated data, and finally show how consistency checking

(a) Initial system concept from Step 1.

(b) Initial electrical design from Step 2.

(c) Initial EPlan P8
model from Step 2.

(d) Initial software design from Step 3.

(e) Initial safety analysis from Step 4.

(f) Updated electrical design from Step 5.

(g) Updated EPlan P8
model from Step 5.

(h) Updated software design from Step 6.

Fig. 2: Development artifacts of conveyor belt system. Initial
versions (a)–(e) and updated versions (f)–(h).

is realized using the integrated data and existing traceability
information.

A. Artifact Integration

As discussed above, the DesignSpace integration platform
is used in this project. This platform provides support for the
transparent integration of arbitrary development artifacts. It
also supports additional services for establishing traceability
between arbitrary development artifacts and incremental con-
sistency checking. The DesignSpace internally uses a single
concept of representing information as attributed graphs and it
does not require development artifacts to be moved to a single
point of storage. Instead, all development artifacts remain
unchanged at their original location (e.g., on an engineers local
harddrive) and the DesignSpace only holds a replication of the
original information that is synchronized live. Thus, artifact
integration with the DesignSpace does not affect existing
processes and practices. Engineers are still able to use their
favorite engineering tools for developing their artifacts. This
is important for two reasons. First, engineers are typically
reluctant to changing the used tools, which is understandable
because engineering tools are typically highly specialized for
performing certain tasks as efficient as possible. Thus, trying
to replace such highly specialized tools is typically a non-
optimal solution with respect to the quality of results and the
efficiency these results are produced. Second, developing a
new engineering tool for a specific domain requires years of
development, with only small chances of coming up with a tool
that leads to better—or even similar—results than the leading
existing tools for the domain. Notice that any information is
stored using the DesignSpace’s internal data structure (i.e., a
graph-like structure).

Integrating data with the DesignSpace platform can be
achieved in different ways. One option is to use file-adapters
that translate file contents into the DesignSpace’s internal data
structure. The second option is to use tool-adapters that directly
translate and synchronize information from engineering tools
with the DesignSpace. Note that the latter can be done live
and incrementally while engineers work on their respective
development artifacts, whereas with file-based integration the
synchronization of the original development artifact and its
duplicate in the DesignSpace can only be done when the file is
saved, requiring the use of diffing tools or inefficient overrides
of existing data. Moreover, by using tool-adapters it is possible
to present information about consistency or trace information
to the engineer directly in the engineering tool. Therefore, the
use of tool-adapters is generally preferable.

For each of the three tools that are used by VHA in their
challenge problem, we developed three different tool adapters,
which we present next.

1) Microsoft Excel: For Microsoft Excel, data integration
is performed at cell level through an Excel plugin written in
C#. We decided to not duplicate all cells in a spreadsheet with
the DesignSpace, but only those cells that are of relevance
for other development artifacts. This decision is based on the
fact that, due to the nature of spreadsheets, a vast majority
of existing cells may be either empty or contain information
that is required only for some internal calculations but does
not have any effect on other artifacts. Instead, those cells

in the spreadsheet that are of relevance and should therefore
be synchronized with the DesignSpace for later use by the
traceability and consistency checking services are annotated
by an engineer. This avoids unnecessary communication over-
head and allows for easier establishing of traceability, as
we will see below. The annotations are added to each cell
individually using Excel’s comment function. To distinguish
comments for data integration from other comments, data
integration comments must conform to the following syn-
tax: $name=<name>; $unit=<unit>; $meta=<meta
information>. The $name attribute allows engineers to
specify a name by which the cell can later be references for
traceability and consistency checking. The $unit attribute
defines the unit of the value saved in the annoted cell. The
attribute $meta allows engineers to specify additional meta
information, for example if a cell is representing some domain
concepts. As an example, consider in Fig. 2(e) the cell with
the value Probably (2nd row, 2nd column). Using the
$meta attribute, an engineer can define that this cell’s value
represents a likelihood. Note that another option would have
been to use predefined templates that define which cells should
be synchronized. However, using annotations provides more
flexibility to engineers in case templates are changed.

2) Eclipse IDE with Java: For source code development,
in this project we relied on the Eclipse IDE. Therefore, we de-
veloped a tool-adapter plugin for the Eclipse IDE and the Java
programming language. Notice again that in practice PLCs
are not programmed using Java. However, in this project we
agreed with VHA to use Java for demonstrating the feasibility
of checking consistency between EPlan P8 models and source
code. VHA is confident that if consistency checking is feasible
with Java, it is also feasible with an actual PLC programming
language. Similarly to the tool-adapter for Microsoft Excel,
this adapter does not synchronize the entire source code with
the DesignSpace platform, but only those parts of it that are
relevant for other artifacts. As for excel, this reduces the
amount of information that is available in the DesignSpace
for establishing traceability. Engineers can mark relevant parts
by adding annotations as comments. Note that such anno-
tations can be made for any element of a program (e.g.,
classes, methods and functions, individual statements, etc.).
The synchronization with the DesignSpace is not performed
immediately when an annotation is added, but it is performed
each time the Eclipse IDE’s compiler is executed, which is
typically after each save triggered by the user.

3) EPlan Electric P8: For electrical models created with
EPlan Electric P8 we followed a similar approach as for
Microsoft Excel and the Eclipse IDE with Java. A tool-adapter
is used that observes the electrical model. Any model elements
that should be synchronized with the DesignSpace have to be
marked by adding a custom property to the element (e.g., to
a modeled component). However, in EPlan it is not possible
to select connections between elements and set this property.
Therefore, the tool-adapter also synchronizes all connection
elements that connect two (or more) already marked (and
therefore synchronized) elements. For instance, if a motor ele-
ment is connected to a controller element, then the connection
between the motor and the controller is also synchronized with
the DesignSpace. An example of this behavior is shown in
Fig. 3. Specifically, the left-hand side of Fig. ?? shows three
model elements that are synchronized with the DesignSpace:

Fig. 3: Wizard for creating a link between EPlan model element and its corresponding source code fragment.

SynchronizedElement

Owner ToolDateUnit

EPlanModelElement

EPlanModelLink

SourceCodeFragment

SourceCodeLink

SpreadsheetCell

SpreadsheetLink

1 unit 1 date 1 date 1 tool

1
so

ur
ce 1

ta
rg

et

* lin
k

1 in 1

ou
t

* lin
k

1
so

ur
ce 1

ta
rg

et

* lin
k

Q70.0

Q30.1

21K3

EML1

in

out

link

link

hwIO out0 1

hwIO out1 1

fb motor control

SCL1

source

target

link

link

D
es

ig
nS

pa
ce

M
et

am
od

el

L1 L0

O1

O0

Fig. 4: Development artifacts and their metamodels integrated
in the DesignSpace.

Q70.0, Q30.1 (only visible partially to the right of Q70.0),
and 21K3. The corresponding DesignSpace representation of
the EPlan model is shown on the right-hand side of the linking
wizard in the center of Fig. 3. Notice that there are four entries:
one for each of the marked model elements, and one additional
representation of the link between Q70.0 and 21K3. This link
has been created in the DesignSpace automatically.

4) Integrated Metamodels of Development Artifacts: As
discussed above, the DesignSpace platform internally uses
a simple, graph-like data structure that represents any in-
formation as artifacts and properties. To still have available
type information for the development artifacts represented in
the DesignSpace, not only the actual development artifacts
(e.g., EPlan models or source code) are synchronized with
the DesignSpace, but also their metamodels. While the de-
velopment artifacts are modeled as logical instantiations of
their metamodels, the representations of both, models and
their metamodels, are runtime instances of the DesignSpace’s
metamodel. Therefore, it must be distinguished between lin-
guistic and ontological levels. Linguistic levels define technical
instantiation at runtime, whereas ontological levels describe
logical instantiation.

In Fig. 4, the linguistic and ontological levels are depicted.
Notice that we use the same notation for representing the
individual development artifacts at the ontological level O0
and their respective metamodels at the ontological level O1.
This indicates that both levels are runtime instances of the
linguistic level L1. The distinction between the two onto-
logical levels is purely virtual and based on interpretation of
the runtime data structures. For each integrated development
artifact its corresponding metamodel remains unchanged in
principle—the metamodel may only be extended with ad-
ditional information, but the original concepts are retained.
This means that any issues are avoided that typically would
arise when trying to merge different metamodels into a sin-
gle one [4], [5]. However, the metamodels used to provide
typing information of synchronized development artifacts has
been simplified for this project. This was not only done
to simplify the development of tool adapters, but also to
reduce the complexity of linking and consistency checking
from the perspective of the involved engineers. Specifically,
the metamodel of EPlan models contains only two types:
EPlanModelElement and EPlanModelLink. The for-

mer is used to represent any first-class entities of EPLan mod-
els (e.g., components), whereas the latter is used for represent-
ing any links that are drawn between first-class entities (e.g.,
when an input of a component is linked to another component’s
output). For source code, the metamodel contains also two
classes: SourceCodeFragment and SourceCodeLink.
A SourceCodeFragment can be any part of source code,
for example a class, a method, an individual statement, or
even a simple comment. A SourceCodeLink is used to
model linking and mapping of source code fragments. For
instance, a SourceCodeLink between two variables is used
to model that the two variables are used as key-value pair in a
map. For Microsoft Excel spreadsheets, the tool adapter only
synchronizes individual cells. Therefore, a single metamodel
element, SpreadsheetCell is sufficient for this project.
However, notice that all metaclasses, except for those that
link information, inherit some properties from the common
superclass SynchronizedInformation, which indicates
that the information is synchronized on request of engineers
(i.e., the information has been marked for synchronization in
the respective engineering tool). Specifically, it is saved for
every element which engineer performed the last modification,
and when this modification happened. The metaclasses that
link information within a type of development artifact do
not inherit from SynchronizedInformation as they are
generated automatically by tool adapters.

At the ontological level O0, the state of the DesignSpace
after step 4 from the challenge problem in Section III is
shown. Note that the relevant elements from each of the three
involved development artifacts have been synchronized with
the DesignSpace automatically by tool-adapters after they have
been annotated by engineers in their respective engineering
tools. For the source code, the three variable and the IO-port
mapping from Fig. 2(d) are represented. For the EPlan P8
model, the three components that model the control signal of
the motor conveyor and the two outputs of the Siemens PLC
are represented. The links between the elements, which have
been generated automatically by the respective tool adapters,
are drawn as boxes with grey background. For the Excel sheet
from Fig. 2(e), there are no annotated cells, meaning that
nothing has to be synchronized with the DesignSpace.

B. Traceability

A major goal of VHA for this project was to allow
for traceability between development artifacts so that after a
change has been performed it is possible to easily identify other
artifacts that might be affected and their associated engineers.
After integrating all involved artifacts with the DesignSpace
data integration framework, its traceability service can be
used to establish traceability between (parts of) the different
artifacts. While this may be done (semi-)automatically using
state-of-the-art heuristics to identify the parts that are logically
connected (e.g., a cell in a spreadsheet that is used for defining
a constant in source code), the solution we developed relies on
manual linking performed by engineers. For creating, updating,
and deleting links between the different artifacts, we developed
a standalone desktop application, the DesignSpace Workbench,
which is based on the Eclipse Platform. This application visu-
alizes any information present in the DesignSpace uniformly
and traces can be established between arbitrary pieces of
information. For example, one cell in an Excel sheet may

EPlanModelElement SourceCodeFragmentSpreadsheetCell

Excel-to-EPlan EPlan-to-Code

Excel-to-Code

1 ta
rg

et*

ex
2e

1 so
ur

ce *

ex
2e

1 ta
rg

et

*

e2
c

1 so
ur

ce *

e2
c

1 ta
rg

et

*

ex2c

1 so
ur

ce

*

ex2c

E2C1

E2C2

E2C3

Q70.0

Q30.1

21K3

hwIO out0 1

hwIO out1 1

fb motor control

target

e2c

source

e2c

target

e2c

source

e2c

target

e2c

source

e2c

O1
O0

Fig. 5: Metamodel extension for traceability and linked devel-
opment artifacts.

be linked to another cell in the same spreadsheet, to another
cell in a different spreadsheet, to a constant or also a method
in source code, or to an element of the electrical model. To
create a link, an engineer simply has to specify the two pieces
of information that are logically connected. Different kinds
of links can be used to express additional meaning or to
restrict the information that is eligible as source or target of the
link. For example, for this project, in addition to the linking
metaclasses already presented above that are responsible for
linking information within individual development artifacts,
we provide by default three kinds of links that may be used
to link pieces of information that stem from different develop-
ment artifacts: Excel-to-Code, Excel-to-EPlan, and
EPlan-to-Code. These kinds of links simply restrict the
source and target information to specific types. For instance,
an Excel-to-Code link allows only cells from an Excel
spreadsheet as source and only elements of source code as
target. These three kinds of links are considered bidirectional,
they just express that there exists a connection between the
linked elements. In Fig. 5, the metamodel for traceability used
in this project is depicted. Note that it contains one metaclass
for each of the pre-defined types of traces at the ontological
level O1. In Fig. 3, the creation of an EPlan-to-Code link
is shown. Specifically, the left-hand side of the figure shows
the EPlan model, whereas on the right-hand side the Eclipse
IDE with Java source code is shown. The component named
Q70.0 in the EPlan model (selected and drawn in blue),
which models the Normal Output IO-port of the Siemens
PLC in Fig. 2(b), should be linked to the variable in source
code that reflects this IO-port hwIO_out0_1. In the center
of Fig. 3, the Workbench wizard for creating such a link is
opened. In this wizard, the engineer has opened the information
available in the DesignSpace of the EPlan model (right-hand
side of the wizard) and the source code (left-hand side of
the wizard). The engineer simply selects the DesignSpace
representation of the IO-port (Q70:0) and the correspond-
ing source code fragment representation (hwIO_out0_1)
to establish the desired link. After linking each EPlan P8

model element to its corresponding source code fragment, the
resulting DesignSpace representation is depicted in the bottom
part (i.e., the ontological level O0) of Fig. 5.

Note that additional kinds of links can be defined by
engineers freely and on-demand. For example, an engineer
may want to use a ”rational”-link to connect certain elements
in the electrical model to a requirement, while another en-
gineer may want to use an ”equality”-link to express that a
certain constant in the source code exactly reflects a value
that is defined in a spreadsheet. Note that it is possible for
engineers to express link semantics through additional link
constraints. This allows, for instance, for different units in
different artifacts. For example, a link may be enriched with
a constraint that ensures correct translation between a metric
value in a spreadsheet (e.g., 2,400 mm) to an imperial value in
an electrical model (e.g., 94.48819 inches), or 2.4 kW to 2,400
W. The Object Constraint Language (OCL) is used for defining
these constraints. Using OCL, more complex and sophisticated
constraints can also be stated and validated. Next, we present
in detail how constraints are written and validated.

C. Consistency Checking

As discussed in Section IV, the main objective of this
project was to support consistency checking among VHA’s
major development artifacts. Above, we have seen how these
artifacts are integrated with the DesignSpace platform and
how they can be connected in the DesignSpace to establish
traceability. Besides its obvious benefits, traceability is also a
requirement for enabling the employed consistency checking
approach. Specifically, our solution relies on the Model/Ana-
lyzer consistency checking framework [2], [6]. The Model/-
Analyzer framework allows for highly efficient, incremental
consistency checking of any information that is available in
the DesignSpace. To enable incremental re-validation after
changes of information, it reacts to changes in the data struc-
ture it checks. Therefore, a re-validation is triggered whenever
the information available in the DesignSpace changes (i.e.,
whenever an engineer performs a change in his or her local
tool and the change is synchronized with the DesignSpace).
However, the re-validation works incrementally, meaning that
only those consistency rules are re-validated that are potentially
affected by the change. It has been shown that this incre-
mental re-validation of consistency rules after changes to the
checked data is typically performed within milliseconds. Thus,
the information about changes regarding consistency between
development artifacts can be provided instantly to engineers.
All tasks regarding consistency checking (e.g., definition of
consistency rules, or the notification about and the visualiza-
tion of inconsistencies) are done in the Workbench tool we
developed for this project.

Indeed, to check consistency among information from dif-
ferent artifacts, besides the links between these artifacts there
must exist consistency rules that express their desired relation.
These consistency rules for the Model/Analyzer are written in
OCL, as already briefly discussed above. For each consistency
rule, a context must be defined. This context defines which
elements are checked by the rule. Specifically, the consistency
rule is validated individually for each logical instantiation of
the defined context (i.e., a rule context at the ontological level
L1 means that each instantiation of the rule context at L0

1 [C o n t e x t : EPlan−to−Code]
2 s e l f . s o u r c e . e2c−>c o n t a i n s (s e l f) and
3 s e l f . t a r g e t . e2c−>c o n t a i n s (s e l f)

Listing 1: Consistency Rule for EPlan-to-Code Link

1 [C o n t e x t : S p r e a d s h e e t L i n k]
2 s e l f . sou rce<>s e l f . t a r g e t and
3 s e l f . s o u r c e . l i n k−>c o n t a i n s (s e l f) and
4 s e l f . t a r g e t . l i n k−>c o n t a i n s (s e l f)

Listing 2: Consistency Rule for SpreadsheetLink

is validated). When using the Model/Analyzer and the De-
signSpace platform, any piece of information available in the
DesignSpace may be used as a consistency rule’s context. For
instance, a consistency rule with the context Class::Java
means that the rule is validated for every occurence of a
Java class in the DesignSpace. However, let us focus on four
consistency rules actually used in this project.

1) EPlan-to-Code Link: Let us first show how consis-
tency rules can be used to ensure that the traceability fea-
tures discussed above are used correctly. For links between
EPlan P8 models and source code fragments, we want
to make sure that the links are also accessible from the
EPlanModelElements and the SourceCodeFragments
they are linking. As an example, consider the link created
between the electrical component Q70.0 and the source
code fragment hwIO_out0_1 in Fig. 3. This particular link
should be navigable from both Q70.0 and hwIO_out0_1
by using the reference named ECLink of the respective
DesignSpace representations of the two components (i.e.,
(Q70.0).ECLink and (hwIO_out0_1).ECLink should
point to collections of EPlan-to-Code links that the re-
spective elements are part of, and these collections should
both include the specific link). This can be ensured with the
consistency rule shown in Listing 1. The context of this con-
sisteny rule is EPlan-to-Code. Therefore, the consistency
rule is validated individually for each occurence of such a
link, including the EPlan-to-Code link between Q70.0
and hwIO_out0_1.

2) SpreadsheetLink and SourceCodeLink: Similarly to the
EPlan-to-Code links, we want to ensure that links con-
necting different spreadsheet cells or source code fragments
are used correctly. As shown in the metamodel for linking in
Fig. 5, a spreadsheet cell’s representation in the DesignSpace
may be linked to another cell by a SpreadsheetLink.
However, it is not desired that a cell can be linked to itself.
Therefore, the consistency rule in Listing 2 does not only check
that the link is also accessible from the cells it connects, but
also that it really connects distinct cells.

The same checking can be done for links between
source code fragments. The corresponding consistency rule
is equivalent to the one shown in Listing 2 but with
SourceCodeLink as context.

3) EPlanModelLink: Finally, for the sake of completeness,
links between elements in EPlan P8 models should also only
exist between distinct elements, which is ensured with the
consistency rule shown in Listing 3.

1 [C o n t e x t : EPlanModelLink]
2 s e l f . in<>s e l f . o u t and
3 s e l f . i n . l i n k−>c o n t a i n s (s e l f) and
4 s e l f . o u t . l i n k−>c o n t a i n s (s e l f)

Listing 3: Consistency Rule for EPlanModelLink

1 [C o n t e x t : EPlanModelLink]
2 (s e l f . i n . e2c−>s i z e ()>0 and s e l f . o u t . e2c−>s i z e ()>0) i m p l i e s
3 s e l f . i n . e2c−>e x i s t s (
4 x : EPlan−to−Code | s e l f . o u t . e2c−>e x i s t s (
5 y : EPlan−to−Code | x . s o u r c e . l i n k−>e x i s t s (
6 z : SourceCodeLink |
7 ((z . s o u r c e =x . s o u r c e and z . t a r g e t =y . s o u r c e) or
8 (z . s o u r c e =y . s o u r c e and z . t a r g e t =x . s o u r c e)))))

Listing 4: Advanced Semantics Consistency Rule for
EPlanModelLink

Now that we have described consistency rules that ensure
correct traceability, let us move on to consistency rules for
ensuring correct relations between different development arti-
facts, such as EPlan P8 models and Java source code. Specifi-
cally, we want to make sure that whenever two components in
an electrical model are linked, their respective representations
in source code are also linked. The corresponding consistency
rule, which is instantiated for every EPlanModelLink,
is shown in Listing 4. Indeed, this can only be checked
if both of the linked model elements (i.e., the link’s in
and out EPlanModelElements) are represented by a
source code fragment (i.e., the target of a EPlan-to-Code
link). This can be ensured by checking whether both ele-
ments are part of at least one EPlan-to-Code link (see
line 2 of Listing 4). If that is the case, then both linked
EPlanModelElements must be part of EPlan-to-Code
links to SourceCodeFragments that are connected by a
SourceCodeLink. Those EPlan-to-Source link for the
in and out EPlanModelElements are named x and y,
respectively, in the consistency rule (see lines 4–5 of Listing 4).
The existence of an appropriate SourceModelLink between
the source code fragments is checked in lines 6–8 of Listing 4.
Since SourceCodeLink should only express a connection
between source code fragments without a prescribed direc-
tion but SourceCodeLinks have a source and a target
SourceCodeFragment, it is necessary to check for the two
possible directions (see lines 7–8 in Listing 4). Now that we
have presented how development artifacts are integrated, which
kinds of links can be used to establish traceability between
different development artifacts, and how this traceability can
be used to define consistency rules, we next have a look at how
this can be applied to the challenge problem from Section III.

VI. APPLICATION TO CHALLENGE PROBLEM

We will now revisit the challenge problem from Section III
and discuss how our solution is applied during the most
important steps.

A. After Step 3

We start with step 3. After this step, engineers have
defined the initial versions of the EPlan P8 model and the
corresponding source code, as depicted in Fig. 2(c) and
Fig. 2(d), respectively. These two development artifacts have

E2C1

E2C2

E2C3

Q70.0

Q30.1

21K3

hwIO out0 1

hwIO out1 1

fb motor control

target

e2c

source

e2c

target

e2c

source

e2c

target

e2c

source

e2c

EML1

in

out

link

link

SCL1

source

target

link

link

Fig. 6: Development artifact representation in the DesignSpace
after step 3.

E2C1

E2C2

E2C3

Q70.0

Q30.1

21K3

hwIO out0 1

hwIO out1 1

fb motor control

target

e2c

source

e2c

target

e2c

source

e2c

target

e2c

source

e2c

EML1

in

out

link

link

SCL1

source

target

link

link

Fig. 7: Development artifact representation in DesignSpace
after step 5.

already been annotated by the engineers and the corresponding
DesignSpace representations have been created automatically
by the tool-adapters. Moreover, engineers have established
traceability between the development artifacts, as shown by the
presence of EPlan-to-Code links. Figure 6 shows the re-
sulting DesignSpace representation. At this point, there are no
inconsistencies. Notice that for the in and out elements of the
EPlanModelLink, the corresponding source code fragments
are also connected via a SourceCodeLink. Therefore, at
this stage of development all involved artifacts are consistent.

B. After Step 5

After step 5, the EPlan P8 model has been changed by
the electrical engineer to reflect the requests issued by the
safety engineer in step 4. The DesignSpace representation of
the electrical model has been updated automatically by the
EPlan P8 tool-adapter, the result of this update is depicted in
Fig. 7. At this point, the consistency rule from Listing 4 is
re-validated for the link that now connects the components
21K3 and Q30.1 (instead of Q70.0). However, since the
source code has not been changed, there is no link in the
source code representation that connects the corresponding
source code fragments. Therefore, an inconsistency is detected
and visualized right after the change of the electrical model.
The information presented to the engineers shows exactly that
the reason for the inconsistency is that the mapping in the
source code is not conforming to the mapping in the EPlan
P8 model. Moreover, the Workbench also lets the electrical
engineer, who performed the change of the electrical model,
identify the software engineer(s) responsible for the involved
source code fragments. Of course, the software engineers will
also be informed in the Workbench about the inconsistency.
Therefore, not only the inconsistency is detected, but more
specific information about the impact of the changed electrical
model is available.

E2C1

E2C2

E2C3

Q70.0

Q30.1

21K3

hwIO out0 1

hwIO out1 1

fb motor control

target

e2c

source

e2c

target

e2c

source

e2c

target

e2c

source

e2c

EML1

in

out

link

link

SCL1

source

target

link

link

Fig. 8: Development artifact representation in DesignSpace
after step 6.

C. After Step 6

After reacting to the inconsistency that was detected af-
ter step 5 by performing step 6, the inconsistency is re-
moved by the software engineer by changing the mapping
between source code fragments. In Fig. 8, the resulting
representation of development artifacts in the DesignSpace
is depicted. Notice that the SourceCodeLink SCL1 has
changed compared to Fig. 7. Specifically, it now uses as
source the safety output of the Siemens PLC, hwIO_out1_1.
When re-validating the consistency rule from Listing 4 for
the EPlanModelLink EML1, the consistency checker de-
tects that now a SourceCodeLink exists that connects
right source code fragments (i.e., those that represent the
EPlanModelElements that are linked by EML1). Again, the
change is processed immediately by the consistency checker
and the engineer is informed immediately that the change
actually removed the inconsistency.

VII. DISCUSSION

Now that we have presented the solution developed in this
project and its application to the challenge problem, let us
revisit the goals and requirements stated in Section IV and
discuss whether these are met by the solution. Moreover, in
this section we will discuss the major challenges that were
encountered during the project.

A. Goals

1) Traceability: As far as traceability is concerned, our
solution provides the means to establish traceability between
the integrated artifacts (i.e., spreadsheets, electrical models,
and source code). The DesignSpace workbench can be used
not only to establish traces of the pre-defined types, but also
new types of traces with custom semantics can be defined by
engineers. Using our solution, engineers at VHA can easily
create and maintain traceability between different development
artifacts as standard tasks that are added to their established
development process. Engineers are expected to incrementally
build traceability information by creating traces each time they
make use of existing information they received from other
engineers. While managers at VHA and Flanders Make are
confident that this practice can be adopted by engineers, they
believe that more support for engineers is still necessary.

2) Consistency Checking: For consistency checking, we
have developed a set of consistency rules that are validated
automatically and incrementally by the employed Model/An-
alyzer consistency checking framework. VHA believes that
these consistency rules are sufficient to check electrical models
and source code for consistency, which was the main goal
of this project. Moreover, feedback about inconsistencies is

provided instantly (or at any desired point in time) to engineers.
However, more consistency rules may be added to extend the
current set of consistency rules to also cover, for instance,
spreadsheet data.

3) Change Impact Analysis: Based on traceability and
consistency checking, our solution provides change impact
analysis that allows engineers to quickly identify after per-
formed changes which development artifacts may be (or
are) affected and which engineers are responsible for those
development artifacts. Therefore, our solution provides the
information desired by VHA. Overall, the developed solution
helps VHA to realize their goals of establishing traceability
and consistency checking in order to improve the efficiency of
their development process.

B. Requirements

The requirements stated in Section IV are met by the
developed solution. In particular, the stated tools have been
integrated with tool-adapters. Moreover, change impact analy-
sis is now possible and dependencies between development
artifacts are managed and visualized by the DesignSpace
Workbench application.

C. Challenges and Lessons Learned

One factor that has been underestimated in the early
phases of the project was the development of tool-adapters.
Developing a tool-adapter for a commercial, closed-source tool
with a defined API required us not only to familiarize ourselves
with that API, but it also required all involved stakeholders
to analyse and understand exactly which information is actu-
ally available to plug-ins or extensions, and in which form.
Only after an in-depth analysis of the available information,
it is possible to successfully develop a tool-adapter that is
capable of synchronizing the relevant tool information with
the DesignSpace. For example, the EPlan P8 tool-adapter
developed in this project has to automatically discover the links
between two or more components that are synchronized with
the DesignSpace, as it is not possible for a user of the tool to
mark these links. Moreover, it can be an additional challenge to
observe a tool’s internal data structure for incremental changes
in order to synchronize its data live with the DesignSpace (or
any other cloud solution, for that matter). However, typically
tools allow at least for a synchronization at some events
during their typical workflow, for example when the user saves
changes. Additionally there are significant differences between
tools with respect to their extensibility and the expressiveness
of information available for third-party plug-ins or extensions.
However, for this project we were able to access the relevant
information in all three integrated tools. Moreover, it has been
shown that in general most commercial application can be
extended appropriately [7].

Overall, the results of the project show that even the basic
forms of traceability and consistency checking that our solu-
tions provides to VHA may help to improve the efficiency of
a development process significantly. Engineers and managers
at VHA were generally perceiving the use of the provided
tools as straightforward and easy to learn. While only time can
tell whether the practice of establishing and managing traces
is actually performed continuously by engineers, the involved

stakeholders agree that this additional task does not impose
a significant amount of additional work that would severely
impact their existing workflow.

VIII. RELATED WORK

Indeed, the topics of traceability and consistency checking
have been discussed extensively in literature and they have also
been addressed by commercial tool vendors. In this section, we
will discuss those approaches and tools that are closest to the
solution developed in this project and highlight the differences
between existing approaches and tools and the results of this
project. For consistency checking, various approaches have
been proposed by academics and several commercial tools
exist that perform some sort of consistency checking (e.g.,
[6], [8]–[12]; [13]). Unfortunately, to the best of our knowl-
edge, there is no commercial or academic tool available that
supports consistency checking of EPlan P8 models, let alone
support for checking consistency between EPlan P8 models
and other development artifacts. For academic approaches, as
with commercial tools, they do not provide out-of-the-box
support for EPlan P8 models, meaning that an adaptation of
any existing approach was necessary. We opted for employing
the Model/Analyzer consistency checker [2], [6] as it has been
shown that it scales well and provides instant feedback about
inconsistencies, even for large-scale industrial models [14].
Moreover, the Model/Analyzer not only provides engineers
with information about inconsistencies, but it also provides
features that automatically, based on individual inconsisten-
cies, provide engineers with suggestions on how to repair
them [15]. Of course, there also exist other technologies that
allow for automatic model repairs (e.g., [9]). However, such
approaches typically select and execute repairs automatically.
Discussions with VHA and Flanders Make showed that such
automatically performed changes are not desired as engineers
wish to have ultimate control about the development artifacts
and do not want the artifacts to be changed by fully automated
technologies. Thus, the use of the Model/Analyzer, which
only informs about inconsistencies and, if desired, possible
repair options, is a valid choice. For traceability, different
approaches have been proposed in the past, mainly focusing on
automatic creation and management of traces [16], and tools
often support some level of traceability, for example through
change tracking (e.g., Excel). However, discussions with VHA
and Flanders Make showed that automatic discovery of traces
was not desired as there is always a chance of false positives
that must be investigated. Therefore, we decided to rely on
manually managed traces. Relying solely on different tools’
traceability features was indeed not an option as none of the
involved tools allowed to specify any kind of connection to
development artifacts of other tools.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the results of a collaboration
between Van Hoecke Automation, Flanders Make, and JKU’s
ISSE to establish traceability, consistency checking, and impact
analysis in a company that focuses on the development of
automation solutions. During the project, a software solution
was developed that effectively helpes the company to improve

its development process by providing traceability capabilities
for different development artifacts and instant consistency
checking between them. We found that one of the major chal-
lenges was the adaptation of existing technologies to support
the domain-specific commercial tools used by the company.
For future work, we plan to investigate possibilities of making
the integration of such tools easier so that the effort for
establishing traceability and consistency checking technologies
can be reduced and the acceptance and application of these
technogies increases.

X. ACKNOWLEDGEMENTS

This research was supported by Van Hoecke Automation,
Flanders Make, the Austrian Science Fund (FWF): P25289-
N15, and the Austrian Center of Competence in Mechatronics
(ACCM): C210101.

REFERENCES

[1] A. Demuth, M. Riedl-Ehrenleitner, A. Nöhrer, P. Hehenberger, K. Ze-
man, and A. Egyed, “DesignSpace – An Infrastructure for Multi-
User/Multi-Tool Engineering,” in SAC, pp. 1486–1491, 2015.

[2] A. Reder and A. Egyed, “Model/analyzer: a tool for detecting, visual-
izing and fixing design errors in UML,” in ASE, pp. 347–348, 2010.

[3] A. Egyed, “Automatically detecting and tracking inconsistencies in
software design models,” IEEE Trans. Softw. Eng., vol. 37, pp. 188–204,
March 2011.

[4] M. Fahad, N. Moalla, and A. Bouras, “Towards ensuring satisfiability
of merged ontology,” in ICCS, pp. 2216–2225, 2011.

[5] K. Kotis, G. A. Vouros, and K. Stergiou, “Towards automatic merging
of domain ontologies: The hcone-merge approach,” J. Web Sem., vol. 4,
no. 1, pp. 60–79, 2006.

[6] A. Egyed, “Instant consistency checking for the UML,” in ICSE,
pp. 381–390, 2006.

[7] A. Egyed and R. Balzer, “Integrating cots software into systems through
instrumentation and reasoning,” Autom. Softw. Eng., vol. 13, no. 1,
pp. 41–64, 2006.

[8] M. Sabetzadeh, S. Nejati, S. M. Easterbrook, and M. Chechik, “Global
consistency checking of distributed models with tremer+,” in ICSE,
pp. 815–818, 2008.

[9] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency manage-
ment with repair actions,” in ICSE, pp. 455–464, 2003.

[10] M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraou, “To-
wards automated inconsistency handling in design models,” in CAiSE,
pp. 348–362, 2010.

[11] S. Easterbrook and B. Nuseibeh, “Using viewpoints for inconsistency
management,” Software Engineering Journal, vol. 11, no. 1, pp. 31 –43,
1996.

[12] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE,
pp. 511–520, 2008.

[13] IBM, “Rational Software Architect.” http://www-
01.ibm.com/software/rational/products/swarchitect/.

[14] A. Reder and A. Egyed, “Incremental consistency checking for complex
design rules and larger model changes,” in MoDELS, pp. 202–218, 2012.

[15] A. Demuth, M. Riedl-Ehrenleitner, R. E. Lopez-Herrejon, and A. Egyed,
“Co-evolution of metamodels and models through consistent change
propagation,” Journal of Systems and Software, vol. 111, pp. 281–297,
2016.

[16] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
“Software traceability: trends and future directions,” in FOSE, pp. 55–

69, 2014.

